On Zero-Sum and Almost Zero-Sum Subgraphs Over ℤ
نویسندگان
چکیده
For a graph H with at most n vertices and a weighing of the edges of Kn with integers, we seek a copy of H in Kn whose weight is minimal, possibly even zero. Of a particular interest are the cases where H is a spanning subgraph (or an almost spanning subgraph) and the case where H is a fixed graph. In particular, we show that relatively balanced weighings of Kn with {−r, . . . , r} guarantee almost zero-sum copies of spanning graphs with small maximum degree, guarantee zero-sum almost H-factors, and guarantee zero-sum copies of certain fixed graphs.
منابع مشابه
The sum-annihilating essential ideal graph of a commutative ring
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
متن کاملA TRANSITION FROM TWO-PERSON ZERO-SUM GAMES TO COOPERATIVE GAMES WITH FUZZY PAYOFFS
In this paper, we deal with games with fuzzy payoffs. We proved that players who are playing a zero-sum game with fuzzy payoffs against Nature are able to increase their joint payoff, and hence their individual payoffs by cooperating. It is shown that, a cooperative game with the fuzzy characteristic function can be constructed via the optimal game values of the zero-sum games with fuzzy payoff...
متن کاملMultiple attribute decision making with triangular intuitionistic fuzzy numbers based on zero-sum game approach
For many decision problems with uncertainty, triangular intuitionistic fuzzy number is a useful tool in expressing ill-known quantities. This paper develops a novel decision method based on zero-sum game for multiple attribute decision making problems where the attribute values take the form of triangular intuitionistic fuzzy numbers and the attribute weights are unknown. First, a new value ind...
متن کاملA Forward-Backward Projection Algorithm for Approximating of the Zero of the Sum of Two Operators
In this paper, a forward-backward projection algorithm is considered for finding zero points of the sum of two operators in Hilbert spaces. The sequence generated by algorithm converges strongly to the zero point of the sum of an $alpha$-inverse strongly monotone operator and a maximal monotone operator. We apply the result for solving the variational inequality problem, fixed po...
متن کاملThe Turnpike Property for Dynamic Discrete Time Zero-sum Games
We consider a class of dynamic discrete-time two-player zero-sum games. We show that for a generic cost function and each initial state, there exists a pair of overtaking equilibria strategies over an infinite horizon. We also establish that for a generic cost function f , there exists a pair of stationary equilibria strategies (xf ,yf ) such that each pair of “approximate” equilibria strategie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Graphs and Combinatorics
دوره 32 شماره
صفحات -
تاریخ انتشار 2016